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A new model for predicting the computational performance of a sequential
decoder operating in a noisy carrier reference environment is described. The
major difference between this model and previous models is that the new model
characterizes the number of computations per frame as the sum of the computa-
tions resulting from a number of independent searches. This number of indepen-
dent searches can then be considered as an effective frame length. When this
computational model is averaged over noisy reference phase errors using a
medium-rate interpolation scheme, the results are found to agree quite favorably

with experimental measurements.

l. Introduction

Characterizing the computational behavior of a sequen-
tial decoder in the presence of a noisy carrier reference
has leng been recognized as a difficult problem. The first
difficulty one encounters when undertaking such a study
is to characterize the computational behavior of an ideal
(noiseless carrier reference case) decoder. It was con-
jectured by Savage (Ref. 1) and subsequently verified
many times experimentally that the number of computa-
tions required to decode one bit (or branch) behaves as a
Pareto random variable. However, when using sequential
decoding one must necessarily group the incoming data
into blocks or frames, in which case the random variable
of interest is the number of computations per frame rather
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than the number of computations per bit. Unfortunately,
no satisfactory model for the distribution of computations
per frame has been proposed to date. Some progress has
been reported by Layland (Refs. 2 and 3) using curve
fitting techniques of data produced by simulations. Such
a technique has the obvious disadvantage of being valid
only when the simulation conditions are reproduced, and
furthermore, one often loses the insight afforded by more
analytical models. In this paper we develop directly a
model for the distribution of computations per frame
which is based not on simulations but on convolutions of
Pareto distributions (Section II), In Section III, we com-
pare the results of this model to experimental data and
link the two by considering a quantity called the effective
frame length.
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In Section IV we attack the second major difficulty
associated with actual decoder performance modeling:
i.e.,, the effects of a noisy carrier reference. We consider
both high- and low-rate phase error effects upon the ideal
decoder model developed previously. The final “real”
decoder model results using a medium-rate technique
developed by Tausworthe (Ref. 4). This final model is
compared with experimental data in Section V, followed
by conclusions in Section VI.

Il. Convolutions of Pareto Distributions

Let C, represent the number of computations required
for the decoder to decode (or advance) one bit. As pre-
viously stated, it is well known that the random variable
C, approximately obeys the Pareto law; i.e.,

P,{C,>L)~L~ (1)
where « is the Pareto exponent determined by
E“(a) = CYRN (2)

where E () is the random coding bound exponent func-
tion (Ref. 5) which depends implicitly on the signal-to-
noise ratio and Ry is the code rate in bits per channel
symbol. It is customary to plot computational distribu-
tions on log-log paper, in which case Eq. (1) represents
a straight line with slope —a. Now let Cr denote the
number of computations required to decode a frame of
F bits. Two models for the frame computational distribu-
tion which have been proposed in the past are

P,{Cr > L) =FL* (3)

and

P,{Ci>L}= (%) 4

Equation (3) assumes that the accumulation of L com-
putations occurs from a single long search, whereas
Eq. (4) assumes that every bit requires exactly the same
number of computations. Both of these expressions are
clearly wrong since P, {Cr > F) is incorrectly predicted
by Eq. (3) (except when F = 1 or « = 1), and the assump-
tion for Eq. (4) is clearly invalid. However, it is important
to note that Eq. (3) represents a vertical shift of Eq. (1)
by log F (on log-log paper), whereas Eq. 4 represents a
horizontal shift of log F. Both of these observations will
become useful later.
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With this background, let us consider the following
construction. We assume that the computational distri-
bution per bit is given by Eq. (1) (with equality). That is
to say:

P.{Ci=L}=L*—(L+1) (3)

Now, let us assume that the number of computations
required to decode a frame of F. bits (Cr,) is given by the
sum of F, independent and identically distributed (i.i.d.)
random variables each distributed according to Eq. (5).
(This assumption will be modified later.) Then it is well
known that the probability density function of Cr, is
given by the (F.—1) fold convolution sum of Eq. (5).
Figure 1 illustrates the results of such convolutions when
the Pareto exponent « = 1.5 and for various values of F..
It is interesting to note that as the frame length F, in-
creases, the “Pareto-like” characteristic of Cpe rapidly
disappears with the appearance of a low end knee. Such
a knee has been observed in experimentally determined
distributions of computations per frame. Also of signifi-
cance is the fact that all of the curves tend asymptotically
to the result given in Eq. (3), with F replaced by F,. Such
behavior was predicted earlier by Sussman (Ref. 6).
Figure 2 illustrates the behavior of the distribution of Cr,
as a varies (i.e., signal-to-noise ratio (SNR) varies) for
F, =192,

In order to utilize these results, it is necessary to charac-
terize the distribution of Cr_ without having to perform
the convolutions each time. For the purpose of charac-
terizing these distributions, a large number of Pareto
distribution convolutions were performed at different
values of a and F, and the results studied. It soon became
apparent that a pattern was emerging. In particular, it
was noticed (at least for reasonably large F,) that if one
fixed the value of a and varied F., the point on each C r,
distribution which had a tangent line parallel to the
original Pareto distribution occurred at a value of L
which was a constant multiple of F.. In other words,
given « and F,. sufficiently large, there exists a constant
K (a) such that the tangent line to the distribution Cy,
at L = K(a)F, has slope — «. This point appears to be
quite useful since it is quite close to the value of L for
which the distribution of Cr, begins to rapidly drop.
Several values of K(a) are shown in Fig. 3. We note that
K{(a) can be well approximated by

1.54
(6)

K(a) exp

This approximation is also shown in Fig. 3.
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Let us now consider the following model for the distri-
bution of C; . Given « and F, let P, {Cr, > K(a)*F.}
= 1. At K (&) F, let the model distribution begin dropping
in a straight-line manner which best describes the rapid
descent region of the convolved Pareto distribution. This
amounts to letting the distribution be characterized as
behaving initially as a Pareto distribution with exponent
(say) o’. At the point where this straight-line distribution
crosses the asymptotic distribution given by Eq. (3) we
begin following the asymptotic distribution. By perform-
ing such constructions, we again find that the value of o
is also reasonably independent of F, (for sufficiently large
F,). Several values of «” are shown in Fig. 4 along with an
approximation given by

3 M 2.0
7 (7)

o =a+

Combining these results we obtain the model for the
distribution of Cy given by

1, L< K(a)Fp

(8)
[_J ’I!'
P, {Cy >L} = [W] K(a)F. <L < L*
F.Lv;L* <L
where
e \ « In[K(a)F,] —InF, | o
= ex {
p 2 7= (9)

Figure 5 compares the results of the model with the
corresponding Pareto distribution convolutions for F, =
64 and « = 1.0 and « = 1.5. It is interesting to note that a
similar type of model (i.e., Pareto distribution with dis-
continuous «) has been used in the past by Berger and
Mandelbrot (Ref. 7) for characterizing the distribution of
sequences of intererror gaps in telephone lines.

We will find it useful to scale the results of our model
by the frame length F.. In particular we let

N = L 10
‘ F. ( >

represent the average number of computations per bit
(when a frame of F. is decoded using L. computations).
It should be noted that N is quite different from the
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ensemble average of the random variable representing
the number of computations per bit. For example, for any
values of L and F., N is defined as their ratio. On the
other hand, the average of the number of computations
per bit is a fixed number and may be either finite or
infinite depending on the value of «. In terms of N, our
model for the distribution of Cr_ becomes

1;N<L K((y)
N -a’
P,{Cs, > N+F,} = [—K_@] . K(a) < N < N*
F,oo N« N* <N (11)
where
a’ ln K((l) + (a"‘l) In Fe |
L exp a’ — (12)

l1l. The Concept of Effective Frame Length

Now that we have a model for the distribution of Cp,
let us see if it can be used to predict sequential decoder
performance. To accomplish this, the model in Eq. (11)
was compared with experimentally determined frame
computation distributions provided by Layland (Ref. 8).
Figure 6 illustrates this comparison where we notice
immediately that the value of F, for which the model
approximates the experimental result is very much smaller
than the frame length F used in the experiment. In fact,
it appears in Fig. 6 (as well as in essentially all other com-
parisons made but not included in this paper) that the
value of F, that one should use is

F
F,~—
=0 (13)

Indeed, this result appears to have been a significant
factor in improving the accuracy of the model.

Let us reflect upon what Eq. (13) is telling us. Recall
that in Section II F. was used to determine the number
of convolutions which we performed. Consequently, F.,
which we shall interpret as the “effective frame length,”
represents the number of independent searches made by
the decoder. Recall also that a characteristic of the Pareto
distribution is that a single long search of length L is more
likely than two searches of length L/2. However, a single
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long search covering the entire distance L is also very
unlikely. Consequently, one would expect that within a
frame of reasonable length there should be several long
searches. Equation (13) tells us that, within a frame,
approximately 2% of the bits in the frame result in long
searches.

It can be argued that F. should depend on «. Indeed
this surely seems plausible and certainly a model for F,
showing this dependence would be an improvement.
However, there are certain factors which make the exact
selection of F, less critical. At large « there is a good
separation between lines of different F., and consequently
Eq. (13) can be visually justified. As « approaches unity,
all of the lines of F, collapse into the same line. Conse-
quently, any value of F, will work in this region. In the
interval 0 < « < 1, the different F, curves again separate,
except this time with the larger values of F. on top. How-
ever, probabilities are always constrained to be not more
than one, so that there is a limit to the separation that can
occur for this region of «’s. Furthermore, operation of
decoders at these values of « usually occurs with relatively
small probability, so that if one is interested in average
performance, the error contributions resulting from the
region 0 < @ < 1 are usually quite small.

IV. The Effects of % Ndisy Carrier Reference

When sequential decoders are used in data links in-
volving phase-coherent carrier tracking, one must not
only determine the operating characteristics of the de-
coder but must also determine the effect that the carrier
tracking loop has on the decoder as well. There are two
cases where these effects can be quite easily determined.
The first of these, called the low-rate model, occurs when
the data rate is so small relative to the carrier tracking
loop bandwidth W, (two-sided) that one can consider
that the tracking loop phase error process #(t) varies very
rapidly over a sequential decoder bit (branch). In this
case, cne can compute the effective or degraded symbol
energy to noise ratio R from

R=RI[E {cos ¢ (D}]? (14)

where R is the input symbol SNR. Lindsey (Ref. 9) has
shown that Eq. (14) can be expressed as

R=R [%} (15)
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where I.(+) is the v'" order modified Bessel function and
p, is the carrier loop signal to noise ratio. Now, using R
one can determine the appropriate random coding error
exponent function E,(+), and then from Eq. (2) the value
of the Pareto exponent can be determined. Since we
recognize that a« depends on the signal-to-noise ratio we
shall designate the low-rate Pareto exponent as o« (R).
Finally, the low-rate model is obtained by using Eq. (11)
with « replaced by « (R).

At the opposite extreme, consider the case where the
data rate is so high relative to W, that one can consider
the phase error process ¢(t) as being constant over the
entire sequential decoder frame. In this case one creates
a high-rate model by computing «(R cos® ¢), where ¢ is a
random variable distributed as ¢(t). Viterbi (Ref. 10) has
shown that this ¢ has a density function given by

exp(ps cOs ¢) '
_ explpy cos ¢) (16)
p(s) 27 Lps)

Thus, the high-rate model becomes

P(Cy > N-F)= / P {Cp> N*Flp} P(¢) d¢

T

(17)

Unfortunately, in many cases the data rate is such that
neither the high or low rate assumptions are justified.
When this situation occurs one uses some type of interpo-
lation scheme to interpolate between the high- and low-
rate models. The one we shall use is the method devel-
oped by Tausworthe (Ref. 4).

The usual problem one encounters when attempting to
use this method or any other interpolation model origi-
nally developed for uncoded or block coded data, is
determining the effective integration time T, of the
sequential decoder. It appears that a great deal of insight
into the characterization of Ty can be gained by using the
effective frame length developed in the previous section.
To understand this, recall that L represents the total num-
ber of computations required to decode a frame of length
F. Furthermore, we assume that there are F, long (and
independent) searches. For the remaining (F — F,) bits in
the frame let us assume that each bit is decoded using
only one computation. Thus, for these (F — F.) bits the
effective integration time TM] is simply the time per bit T},
If this is true, then the F. long searches must accumulate
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a total of L—F+F, computations. Thus, for the bits in
this group there is an average number of computations
per bit (N) given by

L—F+F,
F.

In order to convert N’ to a time we will use the “full
tree” assumption suggested by Layland (Ref. 3). This
assumption essentially says that if a long search occurs,
the search pattern is more likely to look like a full tree
search rather than a long search along a single wrong
path. Since the average branch depth in a full binary tree
containing N’ branches is log, (1 + N’/2) the average
integration time Ty _for the long search bits is

L—F+3Fe>

T’M2 - Th log'_) ( 2F

(19)

Let us now apply the Tausworthe interpolation separately
to the short and long searches. Toward this end let P, and
P, represent the results computed from the low- and
high-rate models respectively. Then we have

P(Cpr > N*F)=(1—a)P,+a Py;i=12

(20)
where
8, 8 -
j= - 21— :l
a 1 ‘: 3 ( > (21)
8 = —“‘%— 22
[ WL TMI ( )

and where P; (Cp > N+ F), i = 1,2 represent the medium-
rate estimates of the computations distribution for the
short and long search bits respectively. Then, if we
average P; (Cp > N+F), i = 1,2 over the times during
which each result applies we obtain the final estimate
~S .

P(Cr > L) given by

F—F,
Pey > L) = ( 7

P.(Cy > L) (23)

) [P, (Cr> L) = P.(Cp > L)]

V. Comparison of Predicted and Experimental
Results

The real test of a model is its ability to predict per-
formance under real decoding conditions. In order to

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-23

make such a comparison, data from DSS 71 (Ref. 11) as
well as data from DSN System Performance Tests (SPTs),
were compared with our model. Actually, a slightly more
complex version of the model was used. In particular, the
independent search computations distribution model given
by Eq. (11), which is a two-straight-line model, was re-
placed by a three-line model constructed from the two-
line result. The construction procedure is illustrated in
Fig. 7 and results in a model given by

1:N <N,

(%)
N() ;NHSN<N1
P, {Cp, 2 N-Fo} = (24)

25T v

Fl(erv. ‘<_Z\

where
= VKo (25)
K(a)N (26)
ey
. [?@T] 20
N*
B log[ K(a) ] (28)
a‘ log N*
and

—log [F .-« (N*)-] a—d

log[ K* ] ' ? (29)

However, the use of Eq. (24) produces only slight differ-
ences in the predictions relative to the two-line model.

Whenever comparing theoretical predictions with data
taken in the DSN, one must be careful to separate the
loss or degradation resulting from the carrier tracking
loop from those occurring in the rest of the system (speci-
fically the subcarrier tracking loop and symbol tracking
loop). To accomplish this, a telemetry analysis computer
program created by Dunn (Ref. 12) was used to determine
system and subsystem losses. Those losses which did not
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occur as a result of the carrier tracking loop were con-
sidered as degradations on the symbol energy-to-noise
ratio.

Figure 8§ illustrates the closeness of the predicted values
to data provided from Ref. 11. These data were obtained
using the Helios frame length of 1152, and each curve is
characterized by the bit rate, modulation index and total-
power-to-noise-density ratio P,/N,. In Fig. 9 we see the
comparison of our model with data provided by the SPTs,
also for a frame length of 1152. In this figure, the separate
curves are characterized by the bit rate, modulation index
and the symbol crror rate (SER). It is believed that the
separate curves can be more accurately characterized by
using the SER since this quantity is directly measurable.

In Fig. 10 we see the comparison of the predicted result
with experimental results for the Pioneer frame length of
192. Here we see a reasonable separation between the
theoretical and experimental values. It is believed that
this difference is a result of characterizing the distribution
of Cy . Recall that if we use the 2% figure to relate the
actual and effective frame lengths, then for Pioneer we
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are using an effective frame length of less than 4. How-
ever, it was stated that Eq. (11) (or, equivalently, Eq. 24)
was a good approximation only for sufficiently large F..
It is therefore believed that a more accurate model for
the distribution of C r, is needed at the Pioneer effective
frame lengths if one is to perform better estimates than
are indicated in Fig. 10.

VI. Conclusions

We have seen that the performance of an ideal sequen-
tial decoder can be quite accurately predicted by con-
sidering a number of convolutions of Pareto distributions.
We then found that the number of such convolutions
could be interpreted as an effective frame length. The
effective frame length proved not only useful in charac-
terizing the ideal decoder but also provided much insight
into determination of the medium-rate interpolation
parameters used in characterizing real decoders operating
in a noisy carrier reference environment. Although pre-
dictions for Pioneer frame lengths were found to be some-
what in error, the accuracy at longer frame lengths
appears to be quite satisfactory.
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